
 

JOURNAL OF MARITIME SCIENCE AND TECHNOLOGY  2, 1 (2024)  
 

   

Open Access 

Journal of Maritime Science and Technology 
ISSN 2961-6158 

https://journal.dmi.ac.tz 

 

 

 

* Corresponding author: matonya2008@gmail.com 

  

 

Assessing the Effectiveness of Marine Robotics Technologies for Marine Oil 

Spill and Microplastic Mitigation: A Comparative Study 

Michael Maiko Matonya*, Daniel Charles Rukonu  

Department of Science and Management, Dar es Salaam Maritime Institute, P.O. Box 6727, 1/19  Sokoine Drive, Dar es Salaam.               

ARTICLE HISTORY  

Received 2 November 2023  

Accepted 25 April 2024 

 

KEYWORDS: 

Marine robotics technologies   

Oil spillage  

Microplastic pollution  

Multi-criteria decision-making 

Sensitivity analysis 

 

A B S T R A C T 

This study assessed the effectiveness of marine robotics technology in combating marine oil spills 

and microplastic pollution. Rising environmental concerns in marine environments require novel 

solutions, resulting in the use of modern technologies. This study seeks to determine the best maritime 

robotics technology based on major characteristics, such as adaptability, efficiency, safety, and cost. 

To achieve this, a hybrid of multi-criteria decision-making methods (MCDM), including the Genetic 

Algorithm (GA), Analytic Hierarchy Process (AHP), and Grey Relational Analysis–Technique for 

Order Preference by Similarity to Ideal Solution (GRA-TOPSIS), was proposed and implemented. 

The main findings of the study revealed that Unmanned Underwater Gliders (UUGs) performed best, 

followed by Wave Gliders and Unmanned Surface Vehicles (USVs). A sensitivity analysis validated 

the robustness of these rankings. These findings highlight the importance of prioritizing the 

development and deployment of UUGs and Wave Gliders to manage maritime oil spills and 

microplastic contamination. The research did not focus on a specific geographic region but provided 

insights applicable to global marine pollution management and the deployment of a novel hybrid of 

multi-criteria decision-making methods. Moreover, this research highlights the importance of 

optimizing and enhancing the performance of UUGs, Wave Gliders, and Autonomous Underwater 

Vehicles (AUVs) to effectively mitigate environmental risks in marine ecosystems. The study also 

introduces a novel hybrid MCDM method called GAGT (GA-AHP-GRA-TOPSIS), which is a 

combination of various MCDM techniques used in the study, and provides useful insights for 

policymakers, environmental agencies, and researchers working on marine pollution mitigation 

efforts, emphasizing the critical significance of cutting-edge marine robotics technologies in 

protecting marine ecosystems. The hybrid technique was able to capitalize on the strengths of each 

method, improving the overall decision-making process. 

© 2024 DMI. All rights reserved. 

1. Introduction 

The field of marine robotics has experienced significant advancements in 

recent years, with a focus on complex missions and the development of 

sophisticated acoustic networks (Zereik et al., 2018). These advancements 

have been supported by various guidance and control methodologies, 

including fuzzy-based and neural-network-based designs (Karimi and Lu, 

2021). Systems engineering has been used to structure acquisition decisions 

for marine emission reduction technologies while taking stakeholder values 

and uncertainties into account (Aspen et al., 2018). The application of 

Multi-Criteria Decision Making (MCDM) in technology selection, 

particularly in the marine robotics field, is a critical need (Alam et al., 

2021). MCDM methods, such as Genetic Algorithm (GA), Analytic 

Hierarchy Process (AHP) analysis, and Grey Relational Analysis–

Technique for Order Preference by Similarity to Ideal Solution (GRA-

TOPSIS), have been successfully applied in environmental decision-

making (Azhar et al., 2021). The application of MCDM methods in the 

assessment of marine robotics technologies for mitigating marine oil spills 

and microplastic pollution is a relatively unexplored area (Onyena et al., 

2021). The use of MCDM in risk assessment of marine technologies, such 

as Autonomous Underwater Vehicles (AUVs), has been demonstrated 

(Mohamed et al., 2023). However, the specific application of MCDM in 

marine robotics remains largely unexplored. The development of hybrid 

MCDM models, has shown promise in addressing decision-making 

problems (Goswami et al., 2021) and could be applied to the selection of 
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marine robotics technologies. The review of MCDM methods by Sahoo and 

Goswami (2023) provides a comprehensive overview of the advancements 

and applications of these methods and highlights their potential in the field 

of marine robotics. This study aimed to address this gap by comparing three 

commonly used MCDM methodologies, GA, AHP, and GRA-TOPSIS with 

the new hybrid of the three GAGT to evaluate the suitability of marine 

robotics technologies for environmental mitigation purposes. 

 

1.1 Marine Robotics Technology (MRT) 

Marine robotics technologies (MRT), including Autonomous Underwater 

Vehicles (AUVs), Remotely Operated Vehicles (ROVs), and Unmanned 

Surface Vehicles (USVs), have undergone significant advancements in 

recent years. AUVs, specifically, have been the subject of research on 

improving navigation, localization, and control systems, as well as 

collaborative capabilities (González‑García et al., 2020). Similarly, ROVs 

have been studied for their stability, control systems, and tether-

management systems (Huvenne et al., 2018). The development of 

unmanned underwater vehicles (UUVs), including ROVs and AUVs, is 

driven by the need for repeated access to remote and hazardous places for 

data gathering and intervention (Petillot et al., 2019). Current research 

trends in AUVs include localization and navigation techniques, optimal 

path planning, and sensor technology (Sahoo et al., 2019). The design and 

control models of ROUVs have also been reviewed, with a focus on their 

applications and demand (He et al., 2020). The evolution of UUVs has been 

explored, including structural design, materials, sensors, actuators, and   

navigation control (Neira et al., 2021). The use of unoccupied aircraft 

systems (UASs) in marine science and conservation has been highlighted 

with a focus on their potential effects on marine wildlife (Johnston, 2019). 

Instrumentation and measurements in AUVs have been reviewed, with a 

focus on their future uses and development (Sanchez et al., 2020). 

 

1.2 Selecting MRT for Oil Spill and Microplastic Mitigation 

According to Copping et al., (2020), the key considerations when choosing 

MRT are versatility, efficiency, safety, and cost. A versatile MRT can 

handle different spills and pollution types, while an efficient MRT can 

quickly and effectively clean up spills without causing further harm. Safety 

is crucial, and cost is important; therefore, it is essential to choose a 

technology that offers value for money and long-term usability. These 

considerations are particularly important in the context of marine renewable 

energy (MRE) development, where the potential environmental effects and 

economic feasibility of the MRE are also significant factors (Bhuiyan et al., 

2022). The impact of marine recreational fisheries (MRF) on fish stocks 

and ecosystems further underscores the need for effective, safe, and cost-

efficient MRT (Lewin et al., 2019; Hyder et al., 2020). The development of 

scalable multi-vessel multi-float systems and the use of multi-target 

tracking technology for marine radar can contribute to achieving these goals 

(Chao and Yueji, 2020; D’Urso et al., 2021). The integration of MRE with 

ocean observations in a blue economy presents an opportunity to enhance 

the effectiveness and efficiency of MRT (Cavagnaro et al., 2020). Table 1 

lists the key criteria and sub-criteria to be considered when selecting MRT 

for oil spill and microplastic mitigation. The alternatives listed in the table 

include AUVs, ROVs, USVs, Unmanned Underwater Gliders (UUGs), 

Glider, Wave Glider, BathyFloat, Saildrone, and Seaglider (Seegers et al., 

2017). The sub-criteria for each key criterion include maneuverability, 

pollution handling capability, and adaptability for versatility; rate of 

change, sustainability, and reliability for efficiency; compliance, level of 

automation, and minimal risk for safety; and initial purchase cost, running 

cost, and funding options for cost. These sub-criteria are essential for 

making an informed decision when selecting MRT for oil spills and 

microplastic mitigation (Beaverson, 2015; Klein, 2021; Tikanmäki et al., 

2021). Similarly, Table 2 presents the data on autonomous and unmanned 

vehicles used for oil spill cleanup. This includes information on oil types, 

spill sizes, primary cleanup methods, maximum oil encounter rates, and 

modifiers for oil type, spill size, and method. The vehicles listed are AUV, 

ROV, USV, UUV, UUGs, Wave Glider, BathyFloat, Saildrone, and 

Seaglider. 

 

Table 1. Criteria and sub-criteria to consider when selecting MRT (Klein 

2021; Tikanmäki et al.2021; Beaverson 2015; Jorge et al 2019; Hamurcu 

&Eren 2020; Jaurola et al., 2019). 

 

Table 2. Oil spill cleanup (Dave, 2011; Prendergast & Gschwend, 2014). 
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No.2 

fuel 

In-situ 

burning 
18 0.18 2.00 0.25 ✔ - - - - - - - - 

Light 

crude 
Dispersants 160 0.32 0.65 0.46 - - - - - - - - - 

Crude 
Mechanical 

recovery 
54 0.55 0.27 0.92 - ✔ ✔ ✔ ✔ - - - - 

Heavy 

crude 
- - 0.65 0.15 - - - - - - - - - - 

No.6 

fuel 
- - 0.71 0.05 - - - - - - - - - - 

No.4/5 

fuel 
- - 1.82 0.0 - - - - - - - - ✔ ✔ 
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Versatility Maneuverability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Pollution 

handling 

capability 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Adaptability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Efficiency Rate of change ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Sustainability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Reliability ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Safety Compliance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Level of 

automation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Minimal risk ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Cost Initial purchase 

cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Running cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Funding options ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

https://sciwheel.com/work/citation?ids=16228260&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=16228262&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16228262&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16228265,6828186&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16228271,16228268&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16228270&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16232031&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16232031&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16232000,16232019,14723434&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16232000,16232019,14723434&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=16232005,16232028&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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2. Methodology   

A comprehensive review of the literature on AUVs, ROVs, and USVs was 

conducted. This review is followed by a comparative analysis using the GA, 

AHP, and GRA-TOPSIS methodologies. AHP analysis was used to 

prioritize and weight criteria and sub-criteria, while GRA-TOPSIS analysis 

was employed to evaluate alternatives based on these criteria, which 

provided valuable insights for ranking the alternatives (Beskorovainyi, 

2020). This approach aligns with the need for a method that combines 

different techniques to improve the efficiency of decision support systems 

(Beskorovainyi, 2020; Veerappan and Albert, 2020). Fig.1 illustrates the 

steps followed in this study. 

Fig. 1. Methodological steps. 

 

2.1 Defining the alternative and criteria for evaluation  

The effectiveness of MRT for oil spills and microplastic mitigation was 

assessed based on factors including versatility, efficiency, safety, and cost. 

Alternatives include AUVs, ROVs, USVs, UUGs, BathyFloats, Saildrones, 

and Wave Gliders, as shown in Fig. 2. The evaluation of MRT for 

combating marine oil spills and microplastic pollution involves key criteria, 

such as adaptability, efficiency, safety, and cost. Adaptability encompasses 

the ability to operate in diverse marine environments, perform a range of 

tasks, and integrate additional features (Zhang and Sun, 2024). Efficiency 

is determined by the energy consumption, speed, and payload capacity 

(Verfuss et al., 2019). Safety considerations include reliability, collision 

avoidance, and emergency response capabilities (Gallo et al., 2018). The 

cost is evaluated based on the initial investment, operational expenses, and 

long-term sustainability (Urbahs and Zavtkevics, 2020). These criteria are 

crucial for the successful deployment of marine robotics technologies to 

address environmental challenges. 

 

2.2 Evaluation of MRT using AHP Analysis 

The AHP analysis proposed by Saaty (1988) is another popular MCDM 

method that employs pairwise comparisons to derive the priority weights 

for each criterion and alternative. AHP's flexibility and ability of AHP to 

handle complex decision-making problems have led to its application in 

numerous domains such as renewable energy, transportation, and 

environmental conservation (Dinmohammadi and Shafiee, 2017). The 

procedure starts by describing the decision problem and building a 

hierarchy, followed by identifying the aim and appropriate criteria. A 

matrix was then used to perform pairwise comparisons to determine the 

relative importance of the criteria. To maintain consistency, the pairwise 

comparison matrix was normalized, and a weight vector was created to 

indicate the priority weights of the criteria or alternatives. A consistency 

check was performed to test the trustworthiness of the comparisons. 

Aggregation and ranking were performed using the overall priority weights, 

and sensitivity analysis was used to assess the robustness of the results 

(Sharma et al., 2020). 

 

Step 1: Define the decision problem and establish the hierarchy. 

Decision problem; Clearly articulate the decision problem and identify the 

goal. Hierarchy, identify criteria and subcriteria. 

Step 2: Pairwise comparison. 

Pairwise comparison matrix (X) as indicated in equation (1). 

 

X = [

A11 A12 … A1n

A21 A22 … A2n

⋮ ⋮ ⋱ ⋮
Am1 Am2 … Amn

] (1) 

Step 3: Calculate normalized pairwise comparison matrix (Y) as shown in 

equation (2). 

Y = [

y11 y12 … y1n

y21 y22 … y2n

⋮ ⋮ ⋱ ⋮
ym1 ym2 … ymn

] (2) 

 

Step 4: Calculate weight vector (W).  

The weight vector (W) can be calculated as indicated in equation (3) 

w = [

w1

w2

⋮
wn

] (3) 

 

Step 5: Consistency check. 

The consistency index (CI) and consistency ratio (CR) were calculated 

using Equations (4) and (5). 

 
 

CI =
max − n

n − 1
 (4) 

 

 
CR =

CI

RI
 (5) 

 

where CI represents the Consistency Index and RI is the Random Index. 

 

Step 6: Aggregation and ranking. 

The overall priority weights for the alternatives at the lowest level are 

calculated.  

 

Step 7: Sensitivity analysis. 

 The robustness of the results is assessed, and the impact of parameter 

changes is evaluated. 

 

2.3. Evaluation of the MRT using GRA-TOPSIS 

The GRA is a versatile method that has been applied in various fields to 

evaluate relationships between different criteria or attributes. In the context 

of multi-criteria decision making, GRA has been integrated into the 

TOPSIS framework to rank alternatives based on their similarity to the ideal 

solution (Gugulothu et al., 2021). This approach has been used in a range 

of applications, including process parameter optimization in electrical 

discharge machining (Wu, 2021), oil spill emergency management (Zhang 
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et al., 2021), teaching evaluation (Zakeri et al., 2022), sustainability 

assessment of hydrogen production technologies (Li et al., 2020), and 

predictive modeling of surface roughness (Hweju and Abou‑El-Hossein, 

2021). This method has also been extended to image recognition, where it 

has been shown to improve recognition speed and performance (Li et al., 

2020). On the other hand, TOPSIS is a widely used MCDM method that 

ranks alternatives based on their relative closeness to an ideal solution and 

distance from a negative or anti-ideal solution (Quan et al., 2019; Wang et 

al., 2023). TOPSIS has been applied in various fields, including 

environmental management, to evaluate and select the best alternatives 

considering multiple conflicting criteria (Kacprzak, 2021). 

The evaluation process begins by defining the criteria and assigning 

appropriate weights to each. A decision matrix consisting of strategies and 

criteria was then created. The decision matrix was normalized to ensure that 

all criteria were treated equally, facilitating comparisons between 

strategies. Grey relational coefficients were calculated to represent the 

degree of association between alternatives and criteria. Positive and 

negative ideal solutions were determined to assess the potential 

performance of each strategy (Jiang et al., 2010). Finally, the similarity to 

the positive ideal solution was calculated using the GRA-TOPSIS method, 

enabling the ranking of strategies based on their overall performance 

relative to the ideal solution. 

  

Step 1: Define the evaluation criteria and weights. The evaluation criteria 

and their respective weights are represented as vectors as follows: 

[w1, w2, … , wm] (6) 

where m is the number of evaluation criteria and wi is the weight assigned 

to criterion i. 

 

Step 2: Create a decision matrix with the alternatives and criteria. 

Step 2 involves creating a decision matrix using MRT alternatives and 

criteria. Each alternative is assigned a score according to the criteria using 

a decision matrix (Liu et al., 2019; Wang et al., 2023). Decision matrix X 

is composed of m rows and n columns, where m represents the number of 

alternatives and n represents the number of criteria. Each matrix element 

Aij indicates the evaluation of alternative Ai with criterion Ci. The greater 

the value of Aij, the better the performance of alternative Ai concerning 

criterion Cj. 

X = {Aij} =

C1

C2

⋮
Cm

[

A11 A12 … A1n

A21 A22 … A2n

⋮ ⋮ ⋱ ⋮
Am1 Am2 … Amn

] 

 

(7) 

Step 3: Normalize the decision matrix.  

The normalized decision matrix is calculated by dividing each element in 

the decision matrix by the sum of the corresponding column multiplied by 

its weight: Using for as indicated in the equation (8) and (9). 

Y = {yij} = [

y11 y12 … y1n

y21 y22 … y2n

⋮ ⋮ ⋱ ⋮
ym1 ym2 … ymn

] (8) 

Where; 

yij =
Ai

∑ wi
m
1 Aij

    for i = 1,2, … , m and j = 1,2, … , n (9) 

Step 4: Determine Positive-Ideal Solution (PIS) denoted by Y+  and the 

Negative-Ideal Solution (NIS) denoted by Y−.The equations for calculating 

the PIS, Y+ = (y1
+, y2

+, … , yn
+) and NIS Y− = (y1

−, y2
−, … , yn

−) are as 

shown in equations (10) and (11). 

 

 yj
+ = max yij(i = 1,2, … , m, j = 1,2, … , n), (10) 

 

 yj
− = min yij(i = 1,2, … , m, j = 1,2, … , n) (11) 

Step 5: Calculating the separation of each alternative from the PIS and NIS 

(Quan et al., 2019). 

To determine how far apart each choice is from the PIS and NIS, the 

Euclidean distance is used, as indicated in equations (12) and (13). 

 
Dj

+ = ‖yi − Y+‖2 = √∑ (yij − yj
+)

2n
j=1     (i = 1,2, … , m) (12) 

 

 
Dj

− = ‖yi − Y−‖2 = √∑ (yij − yj
−)

2n
j=1     (i = 1,2, … , m) (13) 

Where Dj
+ Represents the distance between alternatives yi  and Y+  . Dj

− 

represents the distance between alternatives yi and Y−. 

 

Step 6: Estimation of grey relational coefficients. 
 

Let PIS and NIS be the reference sequences, and each strategy can be 

determined. Then, the grey relation coefficients for each strategy to the PIS 
and NIS may be calculated by: 

 

 rij
+   =

min
i

min
j

|yj
+ − yij| + ζmax

i
max

j
|yj

+ − yij|

|yj
+ − yij| + ζmax

i
max

j
|yj

+ − yij|

=  
ζvj

vj − yij + ζvj

                 

  (i = 1,2, … , m, j = 1,2, … , n) 

(14) 

 

 

 rij
−   =

min
i

min
j

|yj
− − yij| + ζmax

i
max

j
|yj

− − yij|

|yj
− − yij| + ζmax

i
max

j
|yj

− − yij|

=  
ζvj

vj − yij + ζvj

                 

  (i = 1,2, … , m, j = 1,2, … , n) 

(15) 

where ζ is the distinguishing coefficient, ζ  [0, 1]; ζ = 0.5 is usually applied 

following the rule of least information.  

Step 7: Calculate the consolidated results and grey relational degree. 

 
rij

+ =
1

n
∑ rij

+(i = 1,2, … , m),

n

j=1

 (16) 

 
rij

− =
1

n
∑ rij

−(i = 1,2, … , m),

n

j=1

 (17) 

Equations (11) and (12) are used to execute  Di
+,

Di
− , ri

+and  ri
−

dimensionless processing on and generate integrated 

results. 

 qi
+ = β

Di
+

max (Di
+)

 +γ
ri

+

max (ri
+)

 (i = 1,2, … , m) (18) 

 qi
− = β

Di
−

max (Di
−)

 +γ
ri

−

max (ri
−)

 (i = 1,2, … , m) (19) 

where β is a measure of how closely an alternate solution comes to the ideal 

option in terms of proximity. γ represents the closeness's influence on the 

grey relational degree of the ideal and alternate solutions. β, γ  [0, 1], β + 

γ = 1. 

Step 8: Calculate and grade the options' closeness (Quan et al., 2019). 

https://sciwheel.com/work/citation?ids=16204570&pre=&suf=&sa=0&dbf=0
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Ci =

qi
+

qi
+ + qi

−
 (1,2, … , m) (20) 

Closeness is specified to establish the ranking order of all options. The 

closeness coefficient compares an option's proximity to the positive ideal 

solution with its proximity to the negative ideal solution. A greater Ci value 

suggests a closer match to the positive ideal solution. 

Fig. 2. Defining the alternative and criteria for evaluation. 

2.4 Evaluating MRT using GA 

A range of studies have demonstrated the versatility and effectiveness of 

GA in addressing complex decision-making problems. Ntakolia et al., 

(2022) applied a fuzzy Genetic Algorithm to optimize maritime operations, 

whereas Shafiei et al., (2021) extended this methodology to mixed 

uncertain problems. Both studies successfully addressed conflicting goals 

in planning natural gas and petroleum transportation. Mohammad‑Azari 

Bozorg-Haddad and Loáiciga (2020) reviewed the state-of-the-art of 

Genetic Programming (GP) in water-resources systems analysis, 

highlighting its capability and superiority. Moreover, Vié (2020) discussed 

the qualities, challenges, and future of GAs, emphasizing their 

computational efficiency and the need for further innovation. Alam-

Mohammad and Hira (2021) explored the role of GAs in engineering 

pedagogies and their applications in solving complex problems. These 

studies collectively underscore the potential of GAs and GPs to address a 

wide range of decision-making problems (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Genetic algorithm steps. 

3. Results and Discussion 

One of the aims of this study was to assess the effectiveness of marine 

robotics technologies in combating marine oil spills and microplastic 

pollution using multi-criteria decision-making methods such as genetic 

algorithms, analytic hierarchy processes, and grey relational analysis. This 

study compared various marine robotics technologies based on key criteria, 

including adaptability, efficiency, safety, and cost. After applying these 

methods, the following results were obtained. 

 

3.1 AHP analysis 

The criteria weights and alternative scores provided in the table were 

derived from a group decision-making session involving five individuals 

from East Africa who possessed a deep understanding of marine robotics 

for marine oil spill and microplastic mitigation. These individuals are 

considered experts in multi-criteria decision-making processes within this 

domain. Through collaborative discussions and deliberations, the group 

collectively assigned weights to criteria, such as versatility, efficiency, 

safety, and cost, reflecting their relative importance in evaluating the 

effectiveness of marine robotics technologies. Likewise, they assessed the 

performance of various alternatives, including AUVs, ROVs, USVs, 

UUVs, UUGs, BathyFloats, Saildrones, and Wave Gliders, based on their 

expertise and knowledge. The resulting scores represent a consensus 

reached through the integration of diverse perspectives and expertise in the 

field, as indicated in Table 3 and Table 4. 

Table 3. Criteria weights. 

Criteria Weight 

Versatility 8.73 

Efficiency 52.12 

Safety 16.00 
Cost 23.14 

 

 

Table 4. Score of alternatives against the criteria. 

Alternative AUV ROV USV UUV UUGs 

Bathy 

Float Saildrone Wave Glider 

Versatility   7   8   7    7    6    8      7    6 

Efficiency   6   8   8    6    6    6      6                    5 

Safety   8   8   8    8    7    8      9  8 

Cost   6   6   8    6    6    7      6 4 

 

Table 5 displays the final ranked scores of the alternatives for marine oil 

spills and microplastic mitigation. The USV tops the list with a score of 

0.1325, followed closely by a ROV with a score of 0.1304. The UUGs 

ranked third with a score of 0.1279. Similarly, AUVs and UUVs share the 

fourth position with a score of 0.1232. The saildrone, wave glider, and 

bathyfloat follow suit with decreasing scores. In addition, the sensitivity 

analysis of the output results involves examining how changes in criteria 

weights impact the final scores of the alternatives (Fig. 4). By adjusting the 

weights assigned to criteria such as versatility efficiency, safety, and cost, 

stakeholders can observe shifts in the rankings of alternatives cost. 

 

Table 5. Final ranked scores of alternatives. 
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Rank Alternative    Final Ranked Score 

1 USV 0.1325 

2 ROV 0.1304 

3 UUGs 0.1279 

4 AUV 0.1232 

5 UUV 0.1232 

6 Saildrone 0.1218 

7 Wave Glider 0.1205 

8 BathyFloat 0.1204 

 

Fig. 4. Sensitivity analysis of alternatives against criteria. 

3.2. GRA-TOPSIS analysis 

Table 6 presents a normalized decision matrix depicting the performance of 

various marine robotic alternatives across four criteria: versatility, 

efficiency, safety, and cost. From the findings; 

i) ROV and USV emerge as top performers in terms of efficiency 

and safety, while saildrones lead to safety. 

ii) AUV and UUV exhibit cost-effectiveness. 

iii) Versatility varies among the alternatives, with ROV showing 

strong performance. 

iv) ROV stands out as a robust choice across multiple criteria, 

while AUV and UUV offer cost-effective options. The choice of 

the most suitable alternative depends on the specific priorities 

and trade-offs concerning the importance of each criterion. 

 

Table 6. Normalized decision matrix.  

 

Versatility Efficiency   Safety    Cost 

AUV 1.09125 6.13176471 2 2.83346939 

ROV 1.24714286 8.17568627 2 2.83346939 

USV 1.09125 8.17568627 2 3.77795918 

UUV 1.09125 6.13176471 2 2.83346939 

UUGs 0.93535714 6.13176471 1.75 2.83346939 

BathyFloat 1.24714286 6.13176471 2 3.30571429 

Saildrone 1.09125 6.13176471 2.25 2.83346939 

Wave Glider 0.93535714 5.10980392 2 1.88897959 

 

In addition, Table 7 presents the best and worst achievable performance 

levels across the criteria, respectively. PIS indicates the optimal 

performance that an alternative can attain, whereas NIS represents the least 

desirable performance.  

Table 7. Positive ideal solution and negative-ideal solution. 

 Versatility Efficiency Safety Cost 

 PIS 1.24714286 8.17568627 2.25 3.77795918 

 NIS 0.93535714 5.10980392 1.75 1.88897959 

 

Similarly, Table 8 indicates how each alternative's performance deviates 

from the best and worst possible scenarios, respectively. Higher Dj+ values 

suggest a greater distance from optimal performance, whereas lower Dj- 

values imply better performance relative to the worst-case scenario. 

 

Table 8. Separation from PIS and NIS. 

Alternatives (Options)   Dj+    Dj- 

AUV 2.27078818 1.42241604 

ROV 0.97701636 3.23286342 

USV 0.29462278 3.61312622 

UUV 2.27078818 1.42241604 

UUGs 2.32742061 1.39156919 

BathyFloat 2.11261227 1.79199648 

Saildrone 2.25698448 1.48686496 

Wave Glider 3.62320146 0.25 

 

In addition, the grey relational coefficients (r+) and (r-) (Table 9) provide a 

comparative analysis of each alternative's performance relative to the 

positive-ideal and negative-ideal solutions, respectively. Higher rj+ values 

indicate closer proximity to the positive-ideal solution, implying better 

overall performance, whereas lower rj- values suggest less similarity to the 

negative-ideal solution, indicating superior performance relative to the 

worst-case scenario.  

 

Table 9. Grey relational coefficients (r+) and (r-). 

Alternatives (Options)   r+    r- 

AUV 1.81538404 1.81538404 

ROV 2.0 1.66197087 

USV 1.81538404 1.66197087 

UUV 1.81538404 1.81538404 

UUGs 1.66197087 2.0 

BathyFloat 2.0 1.66197087 

Saildrone 1.81538404 1.81538404 

Wave Glider 1.66197087 2.0 

 

Likewise, the consolidated results (q+) indicate the overall performance of 

the alternatives relative to the positive-ideal solution, with the USV 

showing the highest performance. Conversely, the grey relational degree 

(q-) highlights how alternatives perform relative to the negative-ideal 

solution, with Wave Glider demonstrating the best performance. Table 10 

represents the results of calculating the consolidated results (q+) and grey 

relational degree (q-) for each alternative (AUV, ROV, USV, UUV, UUGs, 

BathyFloat, Saildrone, Wave Glider), providing insights into their overall 

performance based on the GRA. 
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Table 10. Consolidated results (q+) and grey relational degree (q-). 

Alternatives (Options)   r+    r- 

AUV 1.40740406 1.49311834 

ROV 1.73927233 1.32143172 

USV 1.88373714 1.27439221 

UUV 1.40740406 1.49311834 

UUGs 1.3161851 1.60938121 

BathyFloat 1.52642096 1.40523293 

Saildrone 1.47751293 1.44025268 

Wave Glider 1.23603892 1.92989113 

 

On the other hand, the closeness of options values (Table 11) indicates how 

closely each alternative aligns with the ideal solution, with Wave Glider 

showing the highest performance and USV exhibiting the lowest. These 

results offer a snapshot of each alternative's relative effectiveness, guiding 

decision makers in understanding their strengths and areas for 

improvement. 

Table 11. The closeness of each alternative to the ideal solution. 

Alternatives (Options)      (Ci) 

AUV 0.54063172 

ROV 0.4302945 

USV 0.39440183 

UUV 0.54063172 

UUGs 0.52382862 

BathyFloat 0.53233705 

Saildrone 0.54862863 

Wave Glider 0.60768706 

 

3.2.1. Finding after performing GRA-TOPSIS analysis 

The findings reveal the following rankings based on the comprehensive 

performance index (Ci) derived from the GRA and the TOPSIS for 

alternatives aimed at combating marine oil spills and microplastic pollution. 

These rankings highlight Wave Glider as the top-performing alternative, 

followed by Saildrone, AUV, UUV, BathyFloat, UUGs, ROV, and USV, 

indicating their effectiveness in addressing marine pollution challenges. 

The effectiveness of the GRA-TOPSIS method in addressing marine 

pollution challenges has been demonstrated in various studies. Lu et al., 

(2022) and Mollaoglu et al., (2023) both use the method to optimize engine 

settings and evaluate fuel alternatives, respectively, for reducing emissions. 

Petrovic et al., (2023) applied this method to marine vessel classification 

and trajectory forecasting, while Zhou et al., (2021) used it for sustainable 

product design. 

 

3.3 Genetic Algorithm Analysis  

 

According to the implemented genetic algorithm for selecting the optimal 

alternative based on the average outcomes of AHP and GRA TOPSIS, as 

indicated in, a population size of 100 individuals was utilized over a span 

of 100 generations. A mutation rate of 0.1 was applied to introduce 

variability, while parent selection involved tournaments comprising five 

individuals. The algorithm randomly selects crossover points within the 

individual chromosomes to facilitate recombination. Termination was 

triggered when the maximum number of generations was reached. 

Ultimately, the best individual, characterized by the highest fitness score, 

was identified, leading to the ranking of alternatives based on their 

respective fitness scores, as indicated in Table 12. 

Table 12.  Average results of  AHP and GRA TOPSIS analysis. 

Alternative AHP 

Results 

GRA-TOSPIS  

Results 

Average  

(AHP & GRA-TOPSIS) 

USV 0.1325 0.39440183 0.263450915 

ROV 0.1304 0.4302945 0.28034725 

UUGs 0.1279 0.52382862 0.32586431 

AUV 0.1232 0.54063172 0.33191586 

UUV 0.1232 0.54063172 0.33191586 

Saildrone 0.1218 0.54862863 0.335214315 

Wave Glider 0.1205 0.60768706 0.36409353 

BathyFloat 0.1204 0.53233705 0.326368525 

 

After running the GA as indicated in Table 13 based on the combined 

results of the AHP and the GRA-TOPSIS. UUGs emerged as the best 

alternative with a score of 0.6133, outperforming the others. Decision 

makers can prioritize UUGs owing to their superior performance. However, 

Wave Glider follows closely, suggesting that it is a competitive alternative. 

The other options had lower scores, indicating inferior performance. Hence, 

UUGs stand out as the preferred choice based on this analysis. 

Table 13. GA results. 

Alternative GA Results 

USV 0.5000 

ROV 0.4974 

UUGs 0.6133 

AUV 0.4585 

UUV 0.4585 

Saildrone 0.4194 

Wave Glider 0.5041 

BathyFloat 0.3234 

 

The comparison of the results for different alternatives using AHP, GRA-

TOPSIS, and GA provides valuable insights into their performance across 

various evaluation criteria (Fig. 5). Each method offers unique perspectives, 

allowing decision makers to comprehensively assess alternatives. 

Fig. 5. Comparison of results for different alternatives. 

 

 

https://sciwheel.com/work/citation?ids=16235605&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=16235605&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=16235607&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=16235608&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=16235611&pre=&suf=&sa=0&dbf=1
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3.4 Summary of the key findings 

 

The analysis of underwater glider (UG) performance reveals that UUGs are 

the top alternative, as determined by a GA (Wang et al., 2021). The Wave 

Glider also demonstrated strong performance across both GRA-TOPSIS 

and GA, indicating its competitiveness (Yang et al., 2020). Decision-

makers are advised to integrate multiple evaluation techniques to make 

well-informed decisions (Chen et al., 2018). The application of the 

Success-History Based Adaptive Differential Evolution Algorithm 

(SHADE) to underwater glider path planning (UGPP) is found to yield 

stable and competitive output trajectories (Zamuda and Sosa, 2019). The 

proposed variable-structure filtering method for an unmanned wave glider 

(UWG) was shown to be feasible and suitable for high sea conditions 

(Yiming et al.  2021). A review of underwater gliding robots (UGRs) 

provides valuable insights into their development and future potential 

(Wang et al., 2022). Sensitivity analysis and parameter optimization of 

energy consumption for UGs highlight the importance of the gliding angle, 

velocity, diving depth, and drag coefficient (Song et al., 2020). 

 

4. Conclusion 

 

The objective of this study is to evaluate the effectiveness of various marine 

robotics technologies in addressing marine oil spillage and microplastic 

pollution. Using multi-criteria decision-making methods such as GA, AHP, 

and GRA-TOPSIS, the study successfully assessed and ranked marine 

robotics technologies based on key criteria, including versatility, efficiency, 

safety, and cost. The analysis revealed that UUGs emerged as the top-

performing alternative, closely followed by the Wave Glider. Sensitivity 

analysis further confirmed the robustness of these rankings, highlighting 

the significance of the criteria weights in determining the performance of 

the technologies. Despite the valuable insights gained from this study, it is 

important to acknowledge its limitations. This research focused primarily 

on the effectiveness of marine robotics technologies in addressing oil spills 

and microplastic pollution, potentially overlooking other environmental 

challenges. The findings of this study are based on specific criteria and may 

not encompass all aspects of technology performance. The study 

recommends prioritizing the implementation and advancement of UUGs 

and wave gliders for managing marine oil spills and microplastic pollution. 

The use of UUGs and Wave Gliders has been recommended for managing 

marine oil spills and microplastic pollution because of their superior 

performance and effectiveness (Maawali et al., 2019; Bayırhan and 

Gazioğlu, 2020; Massari et al. 2023). These technologies have 

demonstrated superior performance and effectiveness in the preservation of 

marine ecosystems. Future research endeavors and investments should 

concentrate on optimizing and enhancing the capabilities of UUG and 

Wave Glider to bolster their roles in combating environmental threats in 

marine environments. 
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